FLST WS 2008/2009 - Semantics - Exercise Sheet 2

Manfred Pinkal

- 1. Are the following formulae logically valid, contradictory, or contingent?
 - a. $\models \exists x \forall y (R(x,y) \leftrightarrow \neg R(y,y))$?
 - b. $\models \exists x \forall y R(x,y) \rightarrow \forall y \exists x R(x,y)$?
 - c. $\models \forall y \exists x R(x,y) \rightarrow \exists x \forall y R(x,y)$?

For all of the following exercises, assume that constants have the following types:

```
j, x, y : e
M, Y: <e,t>
```

S: <<e,t>,<e,t>>

C: <<e,t>,t>

R: <e,<e,t>>

- 2. Which of the following expressions are well-formed expression of type-theory?
 - a. j(M)
 - b. S(M(j))
 - c. S(M)
 - d. (S(M))(j)
 - e. C(M)
 - f. (C(M))(j)
- 3. Determine the types of A and B. The complete expression should be of type t.
 - a. (A(M))(i)
 - b. A(M(j))
 - c. (S(M))(A)
 - d. (S(M))(j)
 - e. B((S(M))(A))
- 4. Are the following expressions well-formed? If yes, what is the type of the complete expression?
 - a. $\lambda x(M(x))(C)$
 - b. $\lambda x(M(x))(j)$
 - c. $S(\lambda x(M(x)))$
 - d. $\lambda Y(Y(j))(M)$
 - e. $\lambda x \lambda Y(Y(x))$
 - f. $\lambda x(M(x)) \wedge M(j)$
 - g. $\lambda Y((S(\lambda x(M(x))))(j) \wedge C(Y))(M)$
- 5. Try to translate the following sentences into Type Theory.
 - a. To wash yourself properly is important.
 - b. It is healthy to love somebody
 - c. To be perfect is to have all good properties.

- 6. Reduce the following expressions as much as possible by means of β -reduction.

 - a. $\lambda x(M(x))(j)$ b. $\lambda Y(Y(j))(M)$
 - c. $\lambda y \lambda Y(Y(x))(j)(M)$
 - d. $\lambda x \exists y (R(x)(y))(j)$
 - e. $\lambda x \exists y (R(x)(y))(y)$

 - f. $\lambda Y(Y(j))(\lambda x(M(x)))$ g. $\lambda Y \exists x(Y(x))(\lambda y(R(x)(y))$